Процессоры dsp digital signal processing. Руководство новичка по цифровой обработке сигналов (DSP)

  • 27.04.2024

Some cookies are required for secure log-ins but others are optional for functional activities. Our data collection is used to improve our products and services. We recommend you accept our cookies to ensure you’re receiving the best performance and functionality our site can provide. For additional information you may view the . Read more about our .

The cookies we use can be categorized as follows:

Strictly Necessary Cookies: These are cookies that are required for the operation of analog.com or specific functionality offered. They either serve the sole purpose of carrying out network transmissions or are strictly necessary to provide an online service explicitly requested by you. Analytics/Performance Cookies: These cookies allow us to carry out web analytics or other forms of audience measuring such as recognizing and counting the number of visitors and seeing how visitors move around our website. This helps us to improve the way the website works, for example, by ensuring that users are easily finding what they are looking for. Functionality Cookies: These cookies are used to recognize you when you return to our website. This enables us to personalize our content for you, greet you by name and remember your preferences (for example, your choice of language or region). Loss of the information in these cookies may make our services less functional, but would not prevent the website from working. Targeting/Profiling Cookies: These cookies record your visit to our website and/or your use of the services, the pages you have visited and the links you have followed. We will use this information to make the website and the advertising displayed on it more relevant to your interests. We may also share this information with third parties for this purpose.

Данная статья открывает серию публикаций, посвященных многоядерным цифровым сигнальным процессорам TMS320C6678. В статье дается общее представление об архитектуре процессора. Статья отражает лекционно-практический материал, предлагаемый слушателям в рамках курсов повышения квалификации по программе «Многоядерные процессоры цифровой обработки сигналов C66x фирмы Texas Instruments», проводимых в Рязанском государственном радиотехническом университете.

Цифровые сигнальные процессоры TMS320C66xх строятся по архитектуре KeyStone и представляют собой высокопроизводительные многоядерные сигнальные процессоры, работающие как с фиксированной, так и с плавающей точкой. Архитектура KeyStone – это разработанный фирмой Texas Instruments принцип изготовления многоядерных систем на кристалле, позволяющий организовывать эффективную совместную работу большого числа ядер DSP- и RISC-типов, акселераторов и устройств периферии с обеспечением достаточной пропускной способности внутренних и внешних каналов пересылки данных, основой чего являются аппаратные компоненты: Multicore Navigator (контроллер обмена данными по внутренним интерфейсам), TeraNet (внутренняя шина пересылки данных), Multicore Shared Memory Controller (контроллер доступа к общей памяти) и HyperLink (интерфейс с внешними устройствами на внутрикристальной скорости).

Архитектура процессора TMS320C6678 , наиболее высокопроизводительного процессора в семействе TMS320C66xх, изображена на Рисунке 1. Архитектура может быть разбита на следующие основные компоненты:

  • набор операционных ядер (CorePack);
  • подсистема работы с общей внутренней и внешней памятью (Memory Subsystem);
  • периферийные устройства;
  • сетевой сопроцессор (Network Coprocessor);
  • контроллер внутренних пересылок (Multicore Navigator);
  • служебные аппаратные модули и внутренняя шина TeraNet.

Рисунок 1. Общая архитектура процессора TMS320C6678

Процессор TMS320C6678 работает на тактовой частоте 1.25 ГГц. В основе функционирования процессора лежит набор операционных ядер С66х CorePack, количество и состав которых зависят от конкретной модели процессора. ЦСП TMS320C6678 включает в свой состав 8 ядер DSP-типа. Ядро является базовым вычислительным элементом и включает в свой состав вычислительные блоки, наборы регистров, программный автомат, память программ и данных. Память, входящая в состав ядра, называется локальной.

Кроме локальной памяти, есть память общая для всех ядер – общая память многоядерного процессора (Multicore Shared Memory – MSM). Доступ к общей памяти осуществляется через подсистему управления памятью (Memory Subsystem), которая также включает интерфейс внешней памяти EMIF для обмена данными между процессором и внешними микросхемами памяти.

Сетевой сопроцессор повышает эффективность работы процессора в составе различного рода телекоммуникационных устройств, реализуя аппаратно типовые для данной сферы задачи обработки данных. В основе работы сопроцессора лежат акселератор пакетной передачи данных (Packet Accelerator) и акселератор защиты информации (Security Accelerator). В спецификации на процессор перечислен набор протоколов и стандартов, поддерживаемых данными акселераторами.

Периферийные устройства включают:

  • Serial RapidIO (SRIO) версии 2.1 – обеспечивает скорость передачи данных до 5 GBaud на линию при числе линий (каналов) – до 4;
  • PCI Express (PCIe) версии Gen2 – обеспечивает скорость передачи данных до 5 GBaud на линию при числе линий (каналов) – до 2;
  • HyperLink – интерфейс внутренней шины, позволяющий коммутировать процессоры, построенные по архитектуре KeyStone, напрямую друг с другом и осуществлять обмен на внутрикристальной скорости; скорость передачи данных – до 50 Gbaud;
  • Gigabit Ethernet (GbE) обеспечивает скорости передачи: 10/100/1000 Mbps и поддерживается аппаратным акселератором сетевых коммуникаций (сетевым сопроцессором);
  • EMIF DDR3 – интерфейс внешней памяти типа DDR3; имеет разрядность шины 64 бита, обеспечивающую адресуемое пространство памяти до 8 Гбайт;
  • EMIF – интерфейс внешней памяти общего назначения; имеет разрядность шины 16 бит и может использоваться для подключения 256MB NAND Flash или 16MB NOR Flash;
  • TSIP (Telecom Serial Ports) – телекоммуникационный последовательный порт; обеспечивает скорости передачи до 8 Mбит/с на одну линию при числе линий – до 8;
  • UART – универсальный асинхронный последовательный порт;
  • I2C – шина внутренней связи;
  • GPIO – ввод-вывод общего назначения – 16 выводов;
  • SPI – универсальный последовательной интерфейс;
  • Таймеры (Timers) – используются для генерации периодических событий.
Служебные аппаратные модули включают в себя:
  • модуль отладки и трассировки (Debug and Trace) – позволяет получать отладочным инструментальным средствам доступ к внутренним ресурсам работающего процессора;
  • загрузочное ПЗУ (boot ROM) – хранит программу начальной загрузки;
  • аппаратный семафор (semaphore) – служит для аппаратной поддержки организации совместного доступа параллельных процессов к общим ресурсам процессора;
  • модуль управления питанием – реализует динамическое управление режимами питания компонентов процессора с целью минимизации энергозатрат в моменты, когда процессор работает не в полную мощь;
  • схема ФАПЧ – формирует внутренние тактовые частоты процессора из внешнего опорного тактирующего сигнала;
  • контроллер прямого доступа в память (EDMA) – управляет процессом пересылки данных, разгружая операционные ядра ЦСП и являясь альтернативой Multicore Navigator.
Контроллер внутренних пересылок (Multicore Navigator) представляет собой мощный и эффективный аппаратный модуль, отвечающий за арбитраж передачи данных между различными компонентами процессора. Многоядерные системы на кристалле TMS320C66xx являются весьма сложными устройствами и, чтобы организовать обмен информацией между всеми компонентами такого устройства, необходим специальный аппаратный блок. Multicore Navigator позволяет ядрам, периферийным устройствам, хост-устройствам не брать на себя функции управления обменом данными. Когда какому-либо компоненту процессора необходимо переслать массив данных на другой компонент, он просто указывает контроллеру, что и куда нужно передать. Все функции по самой пересылке и синхронизации отправителя и получателя берет на себя Multicore Navigator.

Основой функционирования многоядерного процессора TMS320C66xх с позиции высокоскоростного обмена данными между всеми многочисленными компонентами процессора, а также внешними модулями, служит внутренняя шина TeraNet.

В следующей статье будет подробно рассмотрена архитектура операционного ядра C66x.

1. Multicore Programming Guide / SPRAB27B - August 2012;
2. TMS320C6678 Multicore Fixed and Floating-Point Digital Signal Processor Data Manual / SPRS691C - February 2012.

Процессор цифровой обработки сигналов (digital signal processor - DSP) - это специализированный программируемый микропроцессор, предназначенный для манипулирования в реальном масштабе времени потоком цифровых данных. DSP-процессоры широко используются для обработки потоков графической информации, аудио- и видеосигналов.

Любой современный компьютер оснащен центральным процессором и только немногие - процессором цифровой обработки сигналов (DSP - digital signal processor). Центральный процессор, очевидно, представляет собой цифровую систему и обрабатывает цифровые данные, поэтому на первый взгляд неясна разница между цифровыми данными и цифровыми сигналами, то есть теми сигналами, которые обрабатывает DSP-процессор.

К цифровым сигналам, в общем случае, естественно отнести все потоки цифровой информации, которые формируются в процессе телекоммуникаций. Главное, что отличает эту информацию, - она не обязательно заносится в память (и поэтому может оказаться недоступной в будущем), следовательно, обрабатывать ее нужно в режиме реального времени.

Число источников цифровой информации практически неограниченно. Так, например, загружаемые файлы в формате MP3 содержат цифровые сигналы, собственно и представляющие звукозапись. В некоторых камкодерах выполняется оцифровка видеосигналов и их запись в цифровом формате. В дорогих моделях беспроводных и сотовых телефонов перед передачей также производится преобразование голоса в цифровой сигнал.

Вариации на тему

DSP-процессоры принципиально отличаются от микропроцессоров, образующих центральный процессор настольного компьютера. По роду своей деятельности центральному процессору приходится выполнять объединяющие функции. Он должен управлять работой различных компонентов аппаратного обеспечения компьютера, таких как дисководы, графические дисплеи и сетевой интерфейс, с тем чтобы обеспечить их согласованную работу.

Это означает, что центральные процессоры настольных компьютеров имеют сложную архитектуру, поскольку должны поддерживать такие базовые функции, как защита памяти, целочисленная арифметика, операции с плавающей запятой и обработка векторной графики.

В итоге типичный современный центральный процессор поддерживает несколько сот команд, которые обеспечивают выполнение всех этих функций. Следовательно, нужен модуль декодирования команд, который позволял бы реализовывать сложный словарь команд, а также множество интегральных схем. Они, собственно, и должны выполнять действия, определяемые командами. Иными словами, типичный процессор в настольном компьютере содержит десятки миллионов транзисторов.

DSP-процессор, напротив, должен быть «узким специалистом». Его единственная задача - изменять поток цифровых сигналов, и делать это быстро. DSP-процессор состоит главным образом из высокоскоростных аппаратных схем, выполняющих арифметические функции и манипулирующих битами, оптимизированных с тем, чтобы быстро изменять большие объемы данных.

В силу этого набор команд у DSP куда меньше, чем у центрального процессора настольного компьютера; их число не превышает 80. Это значит, что для DSP требуется облегченный декодер команд и гораздо меньшее число исполнительных устройств. Кроме того, все исполнительные устройства в конечном итоге должны поддерживать высокопроизводительные арифметические операции. Таким образом, типичный DSP-процессор состоит не более чем из нескольких сот тысяч транзисторов.

Являясь узкоспециализированным, DSP-процессор отлично справляется со своей работой. Его математические функции позволяют непрерывно принимать и изменять цифровой сигнал (такой, как звукозаписи в MP3 или запись разговора по сотовому телефону), не тормозя передачу информации и не теряя ее. Для повышения пропускной способности DSP-процессор оснащается дополнительными внутренними шинами данных, которые обеспечивают более быстрый перенос данных между арифметическими модулями и интерфейсами процессора.

Зачем нужны DSP-процессоры?

Специфические возможности DSP-процессора в части обработки информации делают его идеальным средством для многих приложений. Используя алгоритмы, основанные на соответствующем математическом аппарате, DSP-процессор может воспринимать цифровой сигнал и выполнять операции свертки для усиления или подавления тех или иных свойств сигнала.

В силу того что в DSP-процессорах значительно меньше транзисторов, чем в центральных процессорах, они потребляют меньше энергии, что позволяет использовать их в продуктах, работающих от батарей. Крайне упрощается и их производство, поэтому они находят себе применение в недорогих устройствах. Сочетание низкого энергопотребления и невысокая стоимость обусловливает применение DSP-процессоров в сотовых телефонах и в роботах-игрушках.

Впрочем, спектр их применения этим далеко не ограничивается. В силу большого числа арифметических модулей, наличия интегрированной на кристалле памяти и дополнительных шин данных часть DSP-процессоров могут использоваться для поддержки многопроцессорной обработки. Они могут выполнять сжатие/распаковку «живого видео» при передаче по Internet. Подобные высокопроизводительные DSP-процессоры часто применяются в оборудовании для организации видеоконференций.

Внутри DSP

Приведенная здесь диаграмма иллюстрирует строение ядра процессора Motorola DSP 5680x. Раздельные внутренние шины команд, данных и адресов способствуют резкому повышению пропускной способности вычислительной системы. Наличие вторичной шины данных позволяет арифметическому устройству считать два значения, перемножить их и выполнить операцию накопления результата за один такт процессора.

Не так давно благодаря большому прогрессу в области обработки звука и компьютерных технологий в наше сознание твердо вошло такое понятие как DSP - Digital Signal Processing (Цифровая Обработка Сигнала). Цифровая обработка сигнала - это область техники, занимающаяся реализацией вычислительных алгоритмов в реальном времени. DSP говорит нам о возможности того или иного трансивера реализовывать этот сервис через свои технические возможности. Некоторые современные трансиверы имеют цифровую обработку как на прием, так и на передачу. Можно с уверенностью сказать, что цифровая обработка обеспечивает качество, которое соответствует новым технологиям и времени, в котором мы живем.

Цифровая обработка применительно к радиолюбительству чаще всего применяется при обработке сигнала из эфира, с целью обеспечения более качественного приема, устранения помех, сопровождающих передачу корреспондента. Это осуществляется при работе любыми видами связи, включая цифровые. Для этой цели часто используют компьютер со встроенной звуковой картой (ЗК) и соответствующее программное обеспечение. Однако в реальном времени сигнал обрабатывается с задержкой, и если в режиме приема это еще терпимо, то при передаче - нет.

Работая SSB и используя аппаратно-программные возможности компьютера в обработке сигнала с микрофона, который подключен к звуковой карте компьютера (с последующей подачей НЧ- сигнала на балансный модулятор трансивера), задержка очень существенна. Речь идет не просто об усилении сигнала с микрофона до определенного уровня с помощью ЗК, а об использовании специальных программ обработки сигнала в реальном времени. Ситуация еще более обостряется при работе такими цифровыми видами как Amtor, Pactor, Packet, когда одновременно программно компьютер используется, скажем, как Notch-фильтр и вместе с имеющимся на станции TNC-контроллером он обеспечивает перечисленные виды работ. Задержка в обработке сигнала в компьютере в таких случаях недопустима. Для того чтобы избавиться от этой проблемы, применяют звуковую карту Audigy-2 (например, AUDIGY-2 24 bit 96 kHz).

Также эта звуковая карта имеет аппаратно встроенный процессор эффектов, что позволяет, используя программно-аппаратные возможности, производить обработку сигнала в реальном времени на достаточно высоком уровне, т.е. в режиме передачи, например, в телефонных видах работ - SSB, AM, ЧМ - иметь хороший эквалайзер, компрессор, лимитер, а в режиме приема - Notch-фильтр, экспандер или что-либо другое.

Все это возможно даже при наличии персонального компьютера с процессором Pentium 200…500 МГц, хотя применение более мощных машин приветствуется, поскольку появляются еще большие возможности обработки сигнала с применением программного обеспечения - Plug In и соответствующих программ, алгоритм обработки которых требует более высокой производительности компьютера.

В этом случае современные технологии позволяют не применять внешние дорогостоящие приборы цифровой обработки, а в той или иной степени имитировать их работу, используя для этого вычислительные мощности центрального процессора компьютера и звуковой карты. Однако зто возможно при действительно очень высоких ресурсах компьютера. Применяя эти технологии, остается лишь установить узел стыковки - интерфейс - между трансивером и компьютером и с успехом использовать возможности последнего.

Отдавая должное цифровой обработке сигнала в трансивере или с помощью компьютера, радиолюбители также используют внешние блоки DSP обработки. Это относительно новое направление в радиолюбительстве.

Речь идет о цифровой обработке сигнала с применением высокотехнологичного, современного оборудования, применяемого в радиовещательных и музыкальных студиях, обеспечивающего абсолютно профессиональное качество и естественность звучания. Это высококачественные микшерные пульты, а также всевозможные аналого-цифровые многополосные (чаще параметрические) эквалайзеры, системы шумоподавления - Noise Gate, компрессоры, лимитеры, процессоры мультиэффектов, позволяющие получить различные алгоритмы звуковой обработки.

Следует отметить, что DSP - это общее понятие. Можно иметь DSP эквалайзер, компрессор, другие устройства и даже предусилитель микрофона. Иметь функцию DSP в трансиве- ре - это одно, иметь целую студию DSP-оборудования - это совершенно другие возможности. Это справедливо, если в обоих случаях упомянутая обработка осуществляется по низкой частоте.

Известные фирмы-производители DSP оборудования - Behringer www.behringer.com, Alesis www.alesis.com и другие - имеют огромный его перечень, и многое из него с успехом может быть применено радиолюбителями.

Каждое из этих устройств выполняет свою задачу и, как правило, содержит в своих двух каналах прецизионные 24-битовые АЦП и ЦАП (аналогово-цифровые и цифро-аналоговые преобразователи), работающие на профессиональной частоте дискредитации и имеющие диапазон рабочих частот 20 Гц…20 кГц.

Краткая справка

Аналогово-цифровой и цифро-аналоговый преобразователи. Первый преобразует аналоговый сигнал в цифровое значение амплитуды, второй выполняет обратное преобразование.

Принцип работы АЦП состоит в измерении уровня входного сигнала и выдаче результата в цифровой форме. В результате работы АЦП непрерывный аналоговый сигнал превращается в импульсный, с одновременным измерением амплитуды каждого импульса. ЦАП получает на входе цифровое значение амплитуды и выдает на выходе импульсы напряжения или тока нужной величины, которые расположенный за ним интегратор (аналоговый фильтр) превращает в непрерывный аналоговый сигнал.

Как всякое новое (особенно требующее вложения денег) направление, оно имеет своих сторонников и противников. Для достижения высокого уровня качества требуется применение на передачу более широкого фильтра в SSB-формирователе трансивера - 3 кГц, а не 2,4 кГц или 2,5 кГц,но это не выходит за рамки регламента радиолюбительской связи в части применяемого оборудования.

Сегодня отвергать право на существование направления в обработке звука с помощью добавочных устройств может только ленивый, завистливый или тот, кто не приветствует прогресс и новые технологии.

«Hi-Fi Audio in SSB» - высокое качество обработки НЧ-сигнала в SSB, или «Extended SSB» - расширенное SSB - фразы, часто слышимые и частично объясняющие уже более чем 10-летнюю активность радиолюбителей со всего мира на частоте 14178 кГц.

Здесь находится «круглый стол» любителей студийных сигналов и способов их получения. Это «круглый стол», который не имеет времени проведения. Работа ведется практически круглые сутки. В мире насчитывается чуть более 100 активных радиолюбителей, использующих эти технологии Их не очень беспокоят QRM, тк они уже достигли значительных успехов в оснащении своих станций и имеют не только высокого класса трансиверы усилители мощности (часто класса High Power), но и, что самое важное, эффективные направленные антенны

Многие слышат при практически любом прохождении, а иногда и при его отсутствии Билла, W2ONV, из Нью-Джерси - старейшего радиолюбителя и большого специалиста в области обработки звука с помощью внешних DSP-устройств Имея мощность 1,5 кВт (максимально разрешенную в США) и два сфазированных четырехэлементных волновых канала, он в течение уже многих лет практически всегда слышен в Европе на частоте 14178 кГц Люди, работающие на этом «круглом столе» - разного возраста, в основном, от 30 до 80 лет, причем тон в работе в большей степени задают радиолюбители старшей возрастной группы И это не дань уважения старшему поколению, это констатация факта Именно они имеют большие успехи в области цифровой обработки, поскольку владеют достаточными знаниями и более серьезным оборудованием.

Радиолюбители на «14178» - выдержанные и спокойные, полностью увлеченные своим делом Начинающим коллегам- энтузиастам всегда рады и оказывают им всяческое содействие Большой вклад в развитие обработки звука вносят сами же радиолюбители, размещая на своих WEB-страницах в Интернете полезную информацию Многие согласятся, что огромный вклад в развитие этого направления внес John, NU9N, создавший сайт в Интернете (www.nu9n.com), где он разместил практически учебник по применению внешних устройств цифровой обработки, последовательности их подключения (очень важный вопрос) установке параметров На сайте NU9N можно также скачать образцы DSP-сигналов многих радиолюбителей Слушать их достаточно интересно.

К сожалению, в количественном плане станции из бывшего Союза представлены на 14178 кГц очень слабо - Василий, ER4DX, Игорь, EW1MM, Сергей, EW1DM, Сергей, RW3PS, Виктор, RA9FIF и Олег, RV3AAJ (других данных нет) Сказывается отсутствие лишних финансов на приобретение аудио- оборудования, а также менталитет людей - когда нет времени и средств всем этим заниматься, значит, это плохо, значит, это не нужно Очевидно, следует остановиться на том, что все направления в радиолюбительстве имеют право на жизнь, будь то соревнования, работа QRP (или QRO), DX’ing И даже отсутствие у некоторых знаний азбуки Морзе, иностранного языка и многого другого - это ведь тоже «направление», и мы, увы, к этому уже вроде как и начинаем привыкать.

Пожелаем же «молодым’ (10 лет для радио - срок небольшой) успехов в их нелегком хобби, а всех кто уже достиг результатов в других областях, приглашаю присоединиться к сообществу любителей студийных сигналов, в конце концов, интереснее дебюта ведь ничего нет.

Нечаянно наткнулся на видео с "Чип и Дип" #1 Цифровая обработка звука ADAU1701 | Открытый проект | Начало
И тут "накрыло" всякими воспоминаниями по поводу этой темы. Решил проверить, что творится в наше время на этом фронте, нашёл что много хорошего и интересного.

Качество обработки значительно выросло, цена значительно упала и звуковые DSP (Digital Signal Processing) уже стучатся к нам в дом! :)
В данном видео рассматривается чип SigmaDSP ADAU1701 и я решил посмотреть что можно с ним сотворить и был сильно впечатлён возможностями.
на русском можно о них почитать (). Для меня данный DSP позволяет построить нормальную акустическую систему с внешним кроссовером. Возможностей у системы невообразимо больше, чем мои потуги. Она позволяет запрограммировать себя полному новичку в программировании, но понимающему звуковые компоненты и как они работают: фильтры; кроссоверы; эквалайзеры и т.д. и т.п. Эти знания нужны, чтобы всё это настраивать
Вот так выглядит пример проекта в программе обслуживающей и программирующей DSP:

Как видите почти никаких "цифровых значений", а всё обзывается "по-звуковому".
Конечно его АЦП и ЦАП"ы далеко не Hi-End, а средний Hi-Fi, но для дома этого качества достаточно, а возможности очень велики. Очень хорошо, что DSP имеет двойную точность вычислений (56-бит) и она установлена по умолчанию.
Нуу... маленькие/неполные дифирамбы пропели, теперь реальность.

Плата есть в разных исполнениях:
Вариант 1
. Полная тестовая плата от производителя стоит ~12-15 тыщ рублей и позволяет вытворять всё что угодно. ИМХО самое большое преимущество перед остальными - это полный SPDIF, т.е. и цифровой вход и цифровой выход результатов. Также позволяет делать отладку алгоритмов "на лету". Заказывать "за бугром" с сайта производителя.
Вариант 2 . Это слегка обрубленный макет от МастерКит - набор BM2114dsp . У него все входы/выходы аналоговые, но отладка всё также "на лету".
Стоимость 4900 руб .
Вариант 3 . Это максимально упрощённый вариант использования DSP от "Чип и Дип" их лаборотории "Электронный войска".
Комплект называется Digital Signal Processors RDC2-0027v1, Модуль цифровой обработки звука на SigmaDSP ADAU1701, SigmaStudio
Это вариант с отсутствием программирования "на лету". Создаёшь бинарник, конвертируешь и "заливаешь" с помощью "свистка" в ERROM платы. Отнимает это немного времени, но отнимает, и требует понимания процесса. :)
Стоимость платы 950 рубликов .

Да, уточню, плата после программирования работает как независисмое устройство!!! Т.е. ПК вечно не нужен! И к плате можно подключать "крутилки" (энкодеры); кнопочки и т.д., т.е. внешних методов регулировки достаточно, не обязательно на каждый чих лезть в код DSP.
Выбор за вами...

Теперь касаемо моих хотелок из прошлого. Одна из больших проблем пассивных фильтров - это фазовые искажения и чем больше крутизна спада фильтров, тем больше фазовые искажения. Из-за них возникает множество призвуков от которых чрезвычайно сложно избавится и трудно согласовывать разные частотные диапазоны.
Данные цифровые фильтры этим не страдают и позволяют вытворять многое для согласования полос среза. Но возникает необходимость использовать вместо одного усилителя - три, по одному на каждый частотный диапазон (раз колонка 3-х полосная, то полос 3 и усилителей получается 3). Конечно, их можно оптимизировать по мощности (допустим в моём случае выйдет НЧ - 30Вт; СЧ - 20Вт; ВЧ - 10Вт), но тут на возможности и любителя, думаю унификация победит. :)

Под конец множество видео

Пример, как самому сварганить работу по "цифре"

Парень собирает монстра на двух DSP